Role of Cl channels in Cl-dependent Na/H exchange.
نویسندگان
چکیده
A novel Na/H exchange activity that requires Cl was recently identified in the apical membrane of crypt cells of the rat distal colon. This study explores the nature of the coupling of Cl and Na/H exchange. A concentration of 100 μM 5-nitro-2-(3-phenylpropylamino)benzoic acid, a Cl channel blocker, inhibited the Cl dependence of both proton gradient-driven22Na uptake from crypt cell apical membrane vesicles and Na-dependent intracellular pH recovery from an acid load during microperfusion of the crypt lumen. Cl-dependent proton gradient-driven 22Na uptake was inhibited by 94% by 500 μM DIDS but only by 1% by 10 μM DIDS, an anion exchange inhibitor at low concentrations but a Cl channel blocker at high concentrations. In addition, a polyclonal antibody to the cystic fibrosis transmembrane conductance regulator (CFTR) inhibited Cl-dependent proton gradient-driven22Na uptake by 38%. These results indicate that the Cl dependence of Na/H exchange in the colonic crypt apical membrane involves a Cl channel and not a Cl/anion exchange and permit the speculation that this Cl channel activity represents both CFTR and the outward rectifying Cl conductance.
منابع مشابه
Influence of sodium-calcium exchange on calcium current rundown and the duration of calcium-dependent chloride currents in pituitary cells, studied with whole cell and perforated patch recording
The whole cell patch-clamp technique, in both standard and perforated patch configurations, was used to study the influence of Na+-Ca++ exchange on rundown of voltage-gated Ca++ currents and on the duration of tail currents mediated by Ca++-dependent Cl- channels. Ca++ currents were studied in GH3 pituitary cells; Ca++-dependent Cl- currents were studied in AtT-20 pituitary cells. Na+-Ca++ exch...
متن کاملIntracellular Cl− Dependence of Na-H Exchange in Barnacle Muscle Fibers under Normotonic and Hypertonic Conditions
We previously showed that shrinking a barnacle muscle fiber (BMF) in a hypertonic solution (1,600 mosM/kg) stimulates an amiloride-sensitive Na-H exchanger. This activation is mediated by a G protein and requires intracellular Cl-. The purpose of the present study was to determine (a) whether Cl- plays a role in the activation of Na-H exchange under normotonic conditions (975 mosM/kg), (b) the ...
متن کاملCharacterization of apical membrane Cl-dependent Na/H exchange in crypt cells of rat distal colon.
A novel Cl-dependent Na/H exchange (Cl-NHE) has been identified in apical membranes of crypt cells of rat distal colon. The presence of Cl is required for both outward proton gradient-driven Na uptake in apical membrane vesicles (AMV) and Na-dependent intracellular pH recovery from an acid load in the crypt gland. The present study establishes that Cl-dependent outward proton gradient-driven (2...
متن کاملHuman trabecular meshwork cell volume regulation.
The volume of certain subpopulations of trabecular meshwork (TM) cells may modify outflow resistance of aqueous humor, thereby altering intraocular pressure. This study examines the contribution that Na+/H+, Cl-/HCO exchange, and K+-Cl- efflux mechanisms have on the volume of TM cells. Volume, Cl- currents, and intracellular Ca2+ activity of cultured human TM cells were studied with calcein flu...
متن کاملHigh glucose induces the activity and expression of Na(+)/H(+) exchange in glomerular mesangial cells.
Changes in activity or expression of transporters may account for alterations in cell behavior in diabetes. We sought to ascertain if mesangial cells (MC) grown in different glucose concentrations exhibit changes in activity and expression of acid-extruding transporters, the Na(+)/H(+) and Na(+)-dependent Cl(-)/HCO(-)(3) exchanger. pH(i) was determined by the use of the fluorescent pH-sensitive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 276 1 شماره
صفحات -
تاریخ انتشار 1999